Biome

1

A biome is a distinct geographical region with specific climate, vegetation, and animal life. It consists of a biological community that has formed in response to its physical environment and regional climate. Biomes may span more than one continent. A biome encompasses multiple ecosystems within its boundaries. It can also comprise a variety of habitats. While a biome can cover small areas, a microbiome is a mix of organisms that coexist in a defined space on a much smaller scale. For example, the human microbiome is the collection of bacteria, viruses, and other microorganisms that are present on or in a human body. A biota is the total collection of organisms of a geographic region or a time period, from local geographic scales and instantaneous temporal scales all the way up to whole-planet and whole-timescale spatiotemporal scales. The biotas of the Earth make up the biosphere.

Terminology

The term was suggested in 1916 by Clements, originally as a synonym for biotic community of Möbius (1877). Later, it gained its current definition, based on earlier concepts of phytophysiognomy, formation and vegetation (used in opposition to flora), with the inclusion of the animal element and the exclusion of the taxonomic element of species composition. In 1935, Tansley added the climatic and soil aspects to the idea, calling it ecosystem. The International Biological Program (1964–74) projects popularized the concept of biome. However, in some contexts, the term biome is used in a different manner. In German literature, particularly in the Walter terminology, the term is used similarly as biotope (a concrete geographical unit), while the biome definition used in this article is used as an international, non-regional, terminology—irrespectively of the continent in which an area is present, it takes the same biome name—and corresponds to his "zonobiome", "orobiome" and "pedobiome" (biomes determined by climate zone, altitude or soil). In the Brazilian literature, the term biome is sometimes used as a synonym of biogeographic province, an area based on species composition (the term floristic province being used when plant species are considered), or also as synonym of the "morphoclimatic and phytogeographical domain" of Ab'Sáber, a geographic space with subcontinental dimensions, with the predominance of similar geomorphologic and climatic characteristics, and of a certain vegetation form. Both include many biomes in fact.

Classifications

To divide the world into a few ecological zones is difficult, notably because of the small-scale variations that exist everywhere on earth and because of the gradual changeover from one biome to the other. Their boundaries must therefore be drawn arbitrarily and their characterization made according to the average conditions that predominate in them. A 1978 study on North American grasslands found a positive logistic correlation between evapotranspiration in mm/yr and above-ground net primary production in g/m2/yr. The general results from the study were that precipitation and water use led to above-ground primary production, while solar irradiation and temperature lead to below-ground primary production (roots), and temperature and water lead to cool and warm season growth habit. These findings help explain the categories used in Holdridge's bioclassification scheme (see below), which were then later simplified by Whittaker. The number of classification schemes and the variety of determinants used in those schemes, however, should be taken as strong indicators that biomes do not fit perfectly into the classification schemes created.

Holdridge (1947, 1964) life zones

In 1947, the American botanist and climatologist Leslie Holdridge classified climates based on the biological effects of temperature and rainfall on vegetation under the assumption that these two abiotic factors are the largest determinants of the types of vegetation found in a habitat. Holdridge uses the four axes to define 30 so-called "humidity provinces", which are clearly visible in his diagram. While this scheme largely ignores soil and sun exposure, Holdridge acknowledged that these were important.

Allee (1949) biome-types

The principal biome-types by Allee (1949):

Kendeigh (1961) biomes

The principal biomes of the world by Kendeigh (1961):

Whittaker (1962, 1970, 1975) biome-types

Whittaker classified biomes using two abiotic factors: precipitation and temperature. His scheme can be seen as a simplification of Holdridge's; more readily accessible, but missing Holdridge's greater specificity. Whittaker based his approach on theoretical assertions and empirical sampling. He had previously compiled a review of biome classifications.

Key definitions for understanding Whittaker's scheme

Whittaker's distinction between biome and formation can be simplified: formation is used when applied to plant communities only, while biome is used when concerned with both plants and animals. Whittaker's convention of biome-type or formation-type is a broader method to categorize similar communities.

Whittaker's parameters for classifying biome-types

Whittaker used what he called "gradient analysis" of ecocline patterns to relate communities to climate on a worldwide scale. Whittaker considered four main ecoclines in the terrestrial realm. Along these gradients, Whittaker noted several trends that allowed him to qualitatively establish biome-types: Whittaker summed the effects of gradients (3) and (4) to get an overall temperature gradient and combined this with a gradient (2), the moisture gradient, to express the above conclusions in what is known as the Whittaker classification scheme. The scheme graphs average annual precipitation (x-axis) versus average annual temperature (y-axis) to classify biome-types.

Biome-types

Goodall (1974–) ecosystem types

The multi-authored series Ecosystems of the World, edited by David W. Goodall, provides a comprehensive coverage of the major "ecosystem types or biomes" on Earth:

  1. Terrestrial Ecosystems
  2. Natural Terrestrial Ecosystems
  3. Wet Coastal Ecosystems
  4. Dry Coastal Ecosystems
  5. Polar and Alpine Tundra
  6. Mires: Swamp, Bog, Fen, and Moor
  7. Temperate Deserts and Semi-Deserts
  8. Coniferous Forests
  9. Temperate Deciduous Forests
  10. Natural Grasslands
  11. Heathlands and Related Shrublands
  12. Temperate Broad-Leaved Evergreen Forests
  13. Mediterranean-Type Shrublands
  14. Hot Deserts and Arid Shrublands
  15. Tropical Savannas
  16. Tropical Rain Forest Ecosystems
  17. Wetland Forests
  18. Ecosystems of Disturbed Ground
  19. Managed Terrestrial Ecosystems
  20. Managed Grasslands
  21. Field Crop Ecosystems
  22. Tree Crop Ecosystems
  23. Greenhouse Ecosystems
  24. Bioindustrial Ecosystems
  25. Aquatic Ecosystems
  26. Inland Aquatic Ecosystems
  27. River and Stream Ecosystems
  28. Lakes and Reservoirs
  29. Marine Ecosystems
  30. Intertidal and Littoral Ecosystems
  31. Coral Reefs
  32. Estuaries and Enclosed Seas
  33. Ecosystems of the Continental Shelves
  34. Ecosystems of the Deep Ocean
  35. Managed Aquatic Ecosystems
  36. Managed Aquatic Ecosystems
  37. Underground Ecosystems
  38. Cave Ecosystems

Walter (1976, 2002) zonobiomes

The eponymously named Heinrich Walter classification scheme considers the seasonality of temperature and precipitation. The system, also assessing precipitation and temperature, finds nine major biome types, with the important climate traits and vegetation types. The boundaries of each biome correlate to the conditions of moisture and cold stress that are strong determinants of plant form, and therefore the vegetation that defines the region. Extreme conditions, such as flooding in a swamp, can create different kinds of communities within the same biome.

Schultz (1988) eco-zones

Schultz (1988, 2005) defined nine ecozones (his concept of ecozone is more similar to the concept of biome than to the concept of ecozone of BBC):

Bailey (1989) ecoregions

Robert G. Bailey nearly developed a biogeographical classification system of ecoregions for the United States in a map published in 1976. He subsequently expanded the system to include the rest of North America in 1981, and the world in 1989. The Bailey system, based on climate, is divided into four domains (polar, humid temperate, dry, and humid tropical), with further divisions based on other climate characteristics (subarctic, warm temperate, hot temperate, and subtropical; marine and continental; lowland and mountain).

Olson & Dinerstein (1998) biomes for WWF / Global 200

A team of biologists convened by the World Wildlife Fund (WWF) developed a scheme that divided the world's land area into biogeographic realms (called "ecozones" in a BBC scheme), and these into ecoregions (Olson & Dinerstein, 1998, etc.). Each ecoregion is characterized by a main biome (also called major habitat type). This classification is used to define the Global 200 list of ecoregions identified by the WWF as priorities for conservation. For the terrestrial ecoregions, there is a specific EcoID, format XXnnNN (XX is the biogeographic realm, nn is the biome number, NN is the individual number).

Biogeographic realms (terrestrial and freshwater)

The applicability of the realms scheme above - based on Udvardy (1975)—to most freshwater taxa is unresolved.

Biogeographic realms (marine)

Biomes (terrestrial)

Biomes (freshwater)

According to the WWF, the following are classified as freshwater biomes:

Biomes (marine)

Biomes of the coastal and continental shelf areas (neritic zone):

Summary of the scheme

Example:

Other biomes

Marine biomes

Pruvot (1896) zones or "systems": Longhurst (1998) biomes: Other marine habitat types (not covered yet by the Global 200/WWF scheme):

Anthropogenic biomes

Humans have altered global patterns of biodiversity and ecosystem processes. As a result, vegetation forms predicted by conventional biome systems can no longer be observed across much of Earth's land surface as they have been replaced by crop and rangelands or cities. Anthropogenic biomes provide an alternative view of the terrestrial biosphere based on global patterns of sustained direct human interaction with ecosystems, including agriculture, human settlements, urbanization, forestry and other uses of land. Anthropogenic biomes offer a way to recognize the irreversible coupling of human and ecological systems at global scales and manage Earth's biosphere and anthropogenic biomes. Major anthropogenic biomes:

Microbial biomes

Endolithic biomes

The endolithic biome, consisting entirely of microscopic life in rock pores and cracks, kilometers beneath the surface, has only recently been discovered, and does not fit well into most classification schemes.

Effects of climate change

Anthropogenic climate change has the potential to greatly alter the distribution of Earth's biomes. Meaning, biomes around the world could change so much that they would be at risk of becoming new biomes entirely. More specifically, between 54% and 22% of global land area will experience climates that correspond to other biomes. 3.6% of land area will experience climates that are completely new or unusual. An example of a biome shift is woody plant encroachment, which can change grass savanna into shrub savanna. Average temperatures have risen more than twice the usual amount in both arctic and mountainous biomes, which leads to the conclusion that arctic and mountainous biomes are currently the most vulnerable to climate change. South American terrestrial biomes have been predicted to go through the same temperature trends as arctic and mountainous biomes. With its annual average temperature continuing to increase, the moisture currently located in forest biomes will dry up.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article