Contents
Biological target
A biological target is anything within a living organism to which some other entity (like an endogenous ligand or a drug) is directed and/or binds, resulting in a change in its behavior or function. Examples of common classes of biological targets are proteins and nucleic acids. The definition is context-dependent, and can refer to the biological target of a pharmacologically active drug compound, the receptor target of a hormone (like insulin), or some other target of an external stimulus. Biological targets are most commonly proteins such as enzymes, ion channels, and receptors.
Mechanism
The external stimulus (i.e., the drug or ligand) physically binds to ("hits") the biological target. The interaction between the substance and the target may be: Depending on the nature of the stimulus, the following can occur:
Drug targets
The term "biological target" is frequently used in pharmaceutical research to describe the native protein in the body whose activity is modified by a drug resulting in a specific effect, which may be a desirable therapeutic effect or an unwanted adverse effect. In this context, the biological target is often referred to as a drug target. The most common drug targets of currently marketed drugs include:
Drug target identification
Identifying the biological origin of a disease, and the potential targets for intervention, is the first step in the discovery of a medicine using the reverse pharmacology approach. Potential drug targets are not necessarily disease causing but must by definition be disease modifying. An alternative means of identifying new drug targets is forward pharmacology based on phenotypic screening to identify "orphan" ligands whose targets are subsequently identified through target deconvolution.
Databases
Databases containing biological targets information:
Conservation ecology
These biological targets are conserved across species, making pharmaceutical pollution of the environment a danger to species who possess the same targets. For example, the synthetic estrogen in human contraceptives, 17-R-ethinylestradiol, has been shown to increase the feminization of fish downstream from sewage treatment plants, thereby unbalancing reproduction and creating an additional selective pressure on fish survival. Pharmaceuticals are usually found at ng/L to low-μg/L concentrations in the aquatic environment. Adverse effects may occur in non-target species as a consequence of specific drug target interactions. Therefore, evolutionarily well-conserved drug targets are likely to be associated with an increased risk for non-targeted pharmacological effects.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.