Beck's monadicity theorem

1

In category theory, a branch of mathematics, Beck's monadicity theorem gives a criterion that characterises monadic functors, introduced by in about 1964. It is often stated in dual form for comonads. It is sometimes called the Beck tripleability theorem because of the older term triple for a monad. Beck's monadicity theorem asserts that a functor is monadic if and only if There are several variations of Beck's theorem: if U has a left adjoint then any of the following conditions ensure that U is monadic: Another variation of Beck's theorem characterizes strictly monadic functors: those for which the comparison functor is an isomorphism rather than just an equivalence of categories. For this version the definitions of what it means to create coequalizers is changed slightly: the coequalizer has to be unique rather than just unique up to isomorphism. Beck's theorem is particularly important in its relation with the descent theory, which plays a role in sheaf and stack theory, as well as in the Alexander Grothendieck's approach to algebraic geometry. Most cases of faithfully flat descent of algebraic structures (e.g. those in FGA and in SGA1) are special cases of Beck's theorem. The theorem gives an exact categorical description of the process of 'descent', at this level. In 1970 the Grothendieck approach via fibered categories and descent data was shown (by Jean Bénabou and Jacques Roubaud) to be equivalent (under some conditions) to the comonad approach. In a later work, Pierre Deligne applied Beck's theorem to Tannakian category theory, greatly simplifying the basic developments.

Examples

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article