Contents
Arithmetic derivative
In number theory, the Lagarias arithmetic derivative or number derivative is a function defined for integers, based on prime factorization, by analogy with the product rule for the derivative of a function that is used in mathematical analysis. There are many versions of "arithmetic derivatives", including the one discussed in this article (the Lagarias arithmetic derivative), such as Ihara's arithmetic derivative and Buium's arithmetic derivatives.
Early history
The arithmetic derivative was introduced by Spanish mathematician Josè Mingot Shelly in 1911. The arithmetic derivative also appeared in the 1950 Putnam Competition.
Definition
For natural numbers n, the arithmetic derivative D(n) is defined as follows: D(p) = 1 for any prime p. D(mn) = D(m)n + mD(n) for any m, n \in \N (Leibniz rule).
Extensions beyond natural numbers
Edward J. Barbeau extended the domain to all integers by showing that the choice D(−n) = −D(n) uniquely extends the domain to the integers and is consistent with the product formula. Barbeau also further extended it to the rational numbers, showing that the familiar quotient rule gives a well-defined derivative on \Q: Victor Ufnarovski and Bo Åhlander expanded it to the irrationals that can be written as the product of primes raised to arbitrary rational powers, allowing expressions like to be computed. The arithmetic derivative can also be extended to any unique factorization domain (UFD), such as the Gaussian integers and the Eisenstein integers, and its associated field of fractions. If the UFD is a polynomial ring, then the arithmetic derivative is the same as the derivation over said polynomial ring. For example, the regular derivative is the arithmetic derivative for the rings of univariate real and complex polynomial and rational functions, which can be proven using the fundamental theorem of algebra. The arithmetic derivative has also been extended to the ring of integers modulo n.
Elementary properties
The Leibniz rule implies that D(0) = 0 (take m = n = 0 ) and D(1) = 0 (take m = n = 1 ). The power rule is also valid for the arithmetic derivative. For any integers k and n ≥ 0 This allows one to compute the derivative from the prime factorization of an integer, (in which is the p-adic valuation of x) : This shows that if one knows the derivative for all prime numbers, then the derivative is fully known. In fact, the family of arithmetic partial derivative relative to the prime number p, defined by for all primes q, except for q=p for which is a basis of the space of derivatives. Note that, for this derivative, we have. Usually, one takes the derivative such that D(p)=1 for all primes p, so that With this derivative, we have for example: or And the sequence of number derivatives for x = 0, 1, 2, … begins :
Related functions
The logarithmic derivative is a totally additive function: Let p be a prime. The arithmetic partial derivative of x with respect to p is defined as So, the arithmetic derivative of x is given as Let S be a nonempty set of primes. The arithmetic subderivative of x with respect to S is defined as If S is the set of all primes, then the usual arithmetic derivative. If S={p}, then the arithmetic partial derivative. An arithmetic function f is Leibniz-additive if there is a totally multiplicative function h_f such that for all positive integers m and n. A motivation for this concept is the fact that Leibniz-additive functions are generalizations of the arithmetic derivative D; namely, D is Leibniz-additive with h_D(n)=n. The function \delta given in Section 3.5 of the book by Sandor and Atanassov is, in fact, exactly the same as the usual arithmetic derivative D.
Inequalities and bounds
E. J. Barbeau examined bounds on the arithmetic derivative and found that and where Ω(n) , a prime omega function, is the number of prime factors in n. In both bounds above, equality always occurs when n is a power of 2. Dahl, Olsson and Loiko found the arithmetic derivative of natural numbers is bounded by where p is the least prime in n and equality holds when n is a power of p. Alexander Loiko, Jonas Olsson and Niklas Dahl found that it is impossible to find similar bounds for the arithmetic derivative extended to rational numbers by proving that between any two rational numbers there are other rationals with arbitrary large or small derivatives (note that this means that the arithmetic derivative is not a continuous function from \mathbb{Q} to \mathbb{Q}).
Order of the average
We have and for any δ > 0, where
Relevance to number theory
Victor Ufnarovski and Bo Åhlander have detailed the function's connection to famous number-theoretic conjectures like the twin prime conjecture, the prime triples conjecture, and Goldbach's conjecture. For example, Goldbach's conjecture would imply, for each k > 1 the existence of an n so that D(n) = 2k . The twin prime conjecture would imply that there are infinitely many k for which D2(k) = 1 .
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.