Adipose triglyceride lipase

1

Adipose triglyceride lipase, also known as patatin-like phospholipase domain-containing protein 2 and ATGL, is an enzyme that in humans is encoded by the PNPLA2 gene. ATGL catalyses the first reaction of lipolysis, where triacylglycerols are hydrolysed to diacylglycerols.

Properties

ATGL has very high substrate specificity for triacylglycerols. It contains a catalytic dyad using serine-aspartic acid.

Function

ATGL catalyses the first reaction of lipolysis. It hydrolysis triacylglycerols to diacylglycerols by attacking the fatty acid attached to carbon-3 of glycerol. ATGL acts as a control mechanism of lipolysis, as variations in diacylglycerol concentration impact enzymes in later stages of lipolysis.

Clinical significance

Defects in ATGL can cause problems in lipolysis, leading to neutral lipid storage disease. As triacylglycerols are not hydrolysed to diacylglycerols, there is a build-up of triacylglycerol droplets in granulocytes. ATGL is regulated by insulin, and is similar to structure with adiponutrin, a protein that is regulated by nutrition. When there is a lack of insulin, there is an increased expression of the ATGL protein. Because adipose tissue triglyceride is a major form of energy storage, the study of how ATGL regulation and dysregulation can lead to potential problems will increase understanding of the pathophysiology behind metabolic disorders. ATGL is also the key enzyme that would be able to maintain a balance between mobilization and lipid storage. Lipolytic breakdown performed by ATGL would impact regulatory functions including but not limited to cell death, growth, signaling, metabolism, and gene expression.

Regulation

There must be mechanisms set to maintain the balance between energy storage, and energy release; a dysregulation in the equilibrium result in metabolic disorder, a prime one being diabetes. Adipose Triglyceride Lipase (ATGL) can undergo activation through two different pathways: transcriptionally and through post-translational modification. Through the transcriptional pathway, Beta-adrenergic, a receptor that can form a complex with agonist such as epinephrine, results in the signal transduction pathway activation of Adipose Triglyceride Lipase (ATGL). The alternative pathway is through a post-translational modification specifically phosphorylation of a serine 406 residue located on the enzyme by a kinase known as AMP activated protein kinase (AMPK). Both pathways facilitate the activation of the enzyme, resulting in the breakdown of triglyceride. Insulin is a hormone that regulate the enzyme ATGL, it inhibits the enzyme by favoring lipid storage over lipolysis. One pathway of inhibition of ATGL when insulin is present is the activation of SIRT1, which inhibits FoxO1. Specifically, FoxO1 is repressed from localizing in the nucleus by deacetylation in adipocytes.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

View original