Contents
2 31 polytope
In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group. Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch. The rectified 231 is constructed by points at the mid-edges of the 231. These polytopes are part of a family of 127 (or 27−1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram:.
2_31 polytope
The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7. This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.
Alternate names
Construction
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram,. Removing the node on the short branch leaves the 6-simplex. There are 576 of these facets. These facets are centered on the locations of the vertices of the 321 polytope,. Removing the node on the end of the 3-length branch leaves the 221. There are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope,. The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131,. Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.
Images
Related polytopes and honeycombs
Rectified 2_31 polytope
The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.
Alternate names
Construction
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram,. Removing the node on the short branch leaves the rectified 6-simplex,. Removing the node on the end of the 2-length branch leaves the, 6-demicube, . Removing the node on the end of the 3-length branch leaves the rectified 221,. The vertex figure is determined by removing the ringed node and ringing the neighboring node.
Images
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.